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Abstract

We break the beta of a stock with the market portfolio into eight components related to

future market-wide and firm-specific cash flows and discount rates in up and down markets.

This decomposition naturally accounts for investors’loss aversion in the framework of the

intertemporal CAPM approximation. Systematic risks embodied in stocks’cash-flow sen-

sitivities to permanent aggregate shocks during market declines command a positive and

highly significant premium. Moreover, the empirical fit of the standard CAPM substan-

tially improves when risks are measured accurately. Our findings highlight the importance

of downside fluctuations in the slow-moving component of fundamentals for asset pricing.

JEL classification: G11, G12
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I. Introduction

The concept of market beta—asset’s tendency to comove with the market—is central to asset

pricing. The static CAPM (capital asset pricing model) implies that differences in exposure

to market risk should rationalize differences in expected returns across assets (Sharpe (1964)

and Lintner (1965)). Empirically, however, the standard market beta reveals virtually no

power to explain patterns in returns on stocks of different types of firms (Fama and French

(1992)). If stocks are priced by discounting their cash flows, then both news about cash

flows and discount rates should affect the measures of systematic risk that rational investors

use to evaluate price movements. Moreover, if long-term investors care more about hedging

against permanent rather than temporary shocks—as in the Merton’s (1973) intertemporal

CAPM—asset’s cash-flow beta should obtain a higher compensation than asset’s discount-

rate beta. Recently, Campbell et al. (2010) argue that cash flows and discount rates at both

market- and firm-level are important as systematic risk measures on equity investments.

This paper breaks the beta of a stock with the market portfolio into eight components

related to future market-wide and firm-level cash flows and discount rates in up and down

markets. This decomposition arises as a natural extension of a log-linearized approximation

of the intertemporal CAPMwhich takes into account aversion related to downside movements

in market-wide and firm-level news. More specifically, we distinguish between sensitivities of

stocks’cash-flow and discount-rate components to permanent and transitory aggregate news

in periods of above-average (upside) and below-average (downside) market performance. Ang

et al. (2006), among others, show that a cross-section of stock returns reflects a premium

for bearing downside risk. Our findings highlight the importance of downside fluctuations in

the slow-moving persistent component of fundamentals in understanding the risk exposure

of assets. This evidence provides further support to long-run risks models in Bansal and

Yaron (2004), Bansal et al. (2009), and Da (2009) which emphasize the role of low-frequency

movements in consumption and dividends, in accounting for several puzzles on asset markets.

After substituting out consumption from a standard intertemporal asset pricing model—as
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in the framework of Campbell (1993)—permanent downside risks dominate while transitory

fluctuations cancel out.

Putting the market beta under the microscope reveals that systematic risks embod-

ied in stocks’cash-flow sensitivities to permanent aggregate shocks during market declines

command a positive and highly significant premium. The cash flows of stocks with high

book-to-market ratios, low market equity and strong past performance, i.e. value, small

and winner stocks, hide an exposure to aggregate cash-flow shocks in hard times of bear

markets. In contrary, stocks with low book-to-market ratios, high market equity and weak

past performance, i.e. growth, large and loser stocks, are sensitive to aggregate discount-rate

shocks in hard times of bear markets. Echoing Campbell et al. (2010), we find that growth

stocks are not merely "glamour stocks" whose systematic risks are purely driven by investor

sentiment. More generally, systematic risks embodied in stocks’betas are primarily driven

by the downside risk exposure of their fundamentals. Disappointment aversion of agents

who place a greater weight on losses as opposed to gains is a key to reach this conclusion.

Understanding the relative importance of cash-flow and discount-rate news—the two fun-

damental determinants of asset values—is a crucial issue in modern finance. For instance,

Campbell and Vuolteenaho (2004) decompose the market beta into a "bad beta" compo-

nent attributed to news about the market’s future cash flows—which is tightly linked to

production—and a "good beta" component attributed to news about the market’s discount

rates—which reflects time-varying risk aversion or investor sentiment. The authors show that

differences in "bad betas" help explain value and size premia in stock returns. Galsband

and Nitschka (2013) employ the setup of Campbell and Vuolteenaho (2004) to recognize a

common source of systematic risk in stock and foreign currency returns behind the market’s

cash flows. Campbell et al. (2010) and Koubouros et al. (2010) highlight significant links

between firm-wide and market-wide persistent returns’components, while Botshekan et al.

(2013) and Galsband (2012) demonstrate that a cross-section of US and international stocks

reflects their downside risk exposure to market cash flows.
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In this paper, we propose a natural extension of the beta decomposition approach which

conveniently encompasses long-lived permanent and short-lived temporary shocks to individ-

ual stocks’and total market returns and the asymmetry in agents preferences with respect

to gains versus losses. Our beta representation is comprehensive and easily tractable and

leads to economically intuitive implications. Taking a closer look at proximate symptoms of

stock market fluctuations reveals important insights about stock fundamentals which remain

unexplored in the literature so far. Empirically, our eight-beta model performs far better

than the previously proposed two- and four-beta models and the benchmark three-factor

model of Fama and French (1993) in terms of overall fit, precision of estimates and magni-

tude of pricing errors. Our analysis emphasizes downside risks in slow-moving component of

fundamentals as the central determinant behind the risk-return trade-off on equity markets.

The organization of the paper is as follows. Section II introduces the eight-beta asset

pricing framework. Section III describes the data. Section IV presents our empirical results

for US data over the period 1929 to 2012, and Section V concludes.

II. Stock Fundamentals

This section first uses the log-linear approximation of unexpected excess returns as a sum of

cash-flow and discount-rate news to obtain an intertemporal CAPM. It then explains how

a VAR system can be employed to derive empirical proxies for aggregate and individual

portfolio news components. In a second step, we discuss asymmetric preferences to motivate

the use of downside risk in cross-sectional asset pricing. Finally, we show that a combination

of these two approaches naturally gives rise to an eight-beta asset pricing relation that takes

into account aversion related to downside movements in market-wide and firm-level news.
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A. Cash-Flow and Discount-Rate Risks

The basic equation for stock returns relates unexpected changes in excess stock returns to

expectations of future dividend growth and discount rates (Campbell and Shiller (1988) and

Campbell (1991)):

rt+1 − Etrt+1 ≈ (Et+1 − Et)
∞∑
j=0

ρj∆dt+1+j − (Et+1 − Et)
∞∑
j=1

ρjrt+1+j (1)

where r is the log excess stock return, d is log dividends, and E is the expectation operator.

Here ∆ denotes a one-period backward difference, while ρ is a log-linearization parameter;

a number smaller but close to one. Equation (1) states that negative excess returns today

should be associated with lower expected future dividend growth and/or higher expected

future returns. Alternatively, the unexpected return component or return news, Nt+1 ≡

rt+1−Etrt+1, can be rewritten as a sum of cash-flow news Nc,t+1—corresponding to revision in

expectations about future cash flows, i.e. dividend growth rates—and the discount-rate news

Nd,t+1—corresponding to revision in expectations about future discount rates, i.e. returns:

Nt+1 = Nc,t+1 −Nd,t+1.

Campbell (1991) assumes that the data follow a first-order vector autoregressive (VAR)

process

zt+1= a + Azt+wt+1 (2)

where zt+1 is a m-by-1 state vector with rt+1 as its first element, a and A are m-by-1 vector

and m-by-m companion matrix of constant parameters, and wt+1 is an i.i.d. m-by-1 vector

of shocks. On can then easily show that the discount-rate news obeys

Nd,t+1 = e1′Λwt+1, (3)

where Λ ≡ ρA (I− ρA)−1 and e1 denotes an m-by-1 vector whose first element is unity and
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the remaining elements are all zero. The cash-flow news can be then backed out as a residual

Nc,t+1 = (e1′ + e1′Λ) wt+1, (4)

since both news terms sum up to the total news, Nt+1.

Campbell and Mei (1993) employ the return decomposition in Equation (1) to break

the return on stock portfolios, sorted by industry or size, into cash-flow and discount-rate

components: Ni,t+1 = Nci,t+1−Ndi,t+1. Campbell and Vuolteenaho (2004), by contrast, apply

the return decomposition approach to the return on an aggregate stock index—an empirical

proxy for a market portfolio—to disentangle market-wide cash-flow news and market-wide

discount-rate news: Nm,t+1 = Ncm,t+1 −Ndm,t+1.

A log-linearized approximation of the intertemporal CAPM (ICAPM) of Merton (1973)

suggests a higher compensation for assets’ sensitivities to market cash-flow rather than

discount-rate news. Campbell (1993) shows that the ICAPM can be interpreted in terms

of preferences and parameters of consumption-based asset pricing models. In particular, he

derives a closed-form solution for the consumption and portfolio choice problem by assuming

that the variation in the consumption-wealth ratio is infinitely small. After substituting out

consumption from a standard intertemporal asset pricing model, the risk premium on any

asset i can be written as

Et(r
e
i,t+1) = −V art(ri,t+1)

2
+ γCovt(ri,t+1, Nm,t+1) + (1− γ)Covt(ri,t+1,−Ndm,t+1), (5)

where rei,t+1 is the expected log excess return on any asset i over the riskless interest rate,

V art(ri,t+1)

2
adjusts for Jensen’s inequality, γ denotes the risk aversion parameter, Nm,t+1 is

the unexpected return on the market portfolio, and Ndm,t+1 is its time-varying discount-

rate news as defined above. The first covariance term on the right-hand of Equation (5)

corresponds to the myopic hedging component as in the static CAPM, while the second

covariance term represents the intertemporal hedging motives of an asset holder as in the
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intertemporal CAPM of Merton (1973). Campbell and Vuolteenaho (2004) reformulate this

equation to show that asset beta with the market cash-flow news should be rewarded with

a greater premium than asset beta with the market discount-rate news. They therefore call

the first beta "bad beta" computed as βi,c ≡
Covt(ri,t+1,Ncm,t+1)

V art(Nm,t+1)
and the second beta "good

beta" computed as βi,d ≡
Covt(ri,t+1,−Ndm,t+1)

V art(Nm,t+1)
. Clearly, both betas sum up to the market

beta computed as βi,m ≡
Covt(ri,t+1,Nm,t+1)

V art(Nm,t+1)
. To test the relative importance of cash-flow and

discount-rate news, Campbell and Vuolteenaho (2004) estimate the respective risk premia

from a cross-sectional regression of the form

Rei = λcβi,c + λdβi,d + ei (6)

where bar denotes time-series mean and Rei ≡ Ri − Rf denotes the sample average excess

return on asset i.

More recently, Campbell et al. (2010) combine the asset-specific with the market-wide

return decompositions to propose a four-beta decomposition

βi,m = βi,cc + βi,dc + βi,cd + βi,dd (7)

where

βi,cc ≡
Covt (Nci,t+1, Ncm,t+1)

V art (Nm,t+1)
, (8)

βi,dc ≡
Covt (−Ndi,t+1, Ncm,t+1)

V art (Nm,t+1)
, (9)

βi,cd ≡
Covt (Nci,t+1,−Ndm,t+1)

V art (Nm,t+1)
, (10)

βi,dd ≡
Covt (−Ndi,t+1,−Ndm,t+1)

V art (Nm,t+1)
(11)

measure the sensitivities of stock-specific cash-flow and discount-rate news to the market-

wide cash-flow and discount-rate news and Nm,t+1 = Ncm,t+1 −Ndm,t+1 as above. Campbell
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et al. (2010) show that the high "bad beta" of value stocks and the high "good beta" of

growth stocks are driven by the cash-flow fundamentals of value and growth stocks. More

generally, the authors argue that systematic risks of individual stocks are primarily driven by

the systematic risks of their fundamentals. They hence conclude that growth stocks are not

merely "glamour stocks" but reflect fundamental risks. Koubouros et al. (2010) explore the

asset pricing implications of the four-beta decomposition by estimating separate risk prices

for each of the components

Rei = λccβi.cc + λdcβi,dc + λcdβi,cd + λddβi,dd + ei. (12)

They find that permanent shocks to the aggregate market are the main determinant of the

overall equity premium. Firms’cash-flow and discount-rate sensitivities to the permanent

market news earn statistically significant risk premia, and the four-model improves the two-

beta model of Campbell and Vuolteenaho (2004) in terms of statistical fit.

In this paper, we propose a natural extension of the beta-decomposition approach into

eight components related to cash-flow and discount-rate news in market and individual port-

folio returns. Our decomposition allows to take into account loss aversion associated with

aggregate and firm-level returns. Moreover, it gives guidance for empirical asset pricing tests

which have not been explored yet in the literature. We then employ an empirical approxima-

tion of the Merton’s (1973) ICAPM to test the cross-sectional implications of the eight-beta

decomposition. We argue that recognizing the upside and downside components in market-

wide and firm-level permanent and transitory components is crucial for understanding of

assets’risk exposure.

B. Loss Aversion and Asymmetric Preferences

The notion of loss aversion or investors’asymmetric preferences with respect to downside

losses as opposed to upside gains dates back to Roy (1952) and Markowitz (1952). Loss
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aversion as a risk concept is consistent with the way investors perceive losses as a failure to

earn some minimum or target return (Hogan and Warren (1974)). In terms of equilibrium

portfolio selection models, given a target return such as a risk-free interest rate or the return

on a well-diversified market portfolio, assets with high sensitivity to (downside) realizations

below the target demand a premium, while assets with high sensitivity to (upside) realizations

above the target reflect a discount. Harlow and Rao (1989) generalize the downside risk

literature by specifying risk as deviations from any arbitrary target rate of return. They show

that the standard CAPM does not pass empirical tests, while their model with downside risk

investors cannot be rejected against an unspecified alternative for a large set of target rates

of return.

In line with these studies, Gul (1991) specifies a utility function which takes into account

disappointment aversion reflected in agents’asymmetric perception of losses relative to gains.

Proxying total wealth by a broad-based market portfolio of stocks we follow Ang et al. (2006)

to summarize asymmetric preferences as

U(M) = Γ̃
(∫M
−∞U(M)dF (M) + Γ

∫∞
M
U(M)dF (M)

)
, (13)

where U(M) is the instantaneous utility function over the total market portfolio, e.g. a

CRRA or power utility function, the parameter Γ is the coeffi cient of disappointment aver-

sion, F (·) is the cumulative distribution function of market wealth,M is the certainty equiv-

alent, and Γ̃ is a scalar equal to the weighted probability of the downside and upside market

wealth realizations:

Γ̃ = Pr(M ≤M) + Γ Pr(M > M). (14)

Given 0 < Γ ≤ 1, agents place a greater weight to downside relative to upside market out-

comes. Clearly, Γ = 1 implies a special case of a standard CRRA or the mean-variance

utility. A similar logic underlies a theoretical model of equilibrium in capital markets with

upside and downside betas of Bawa and Lindenberg (1977). In their framework, the tradi-
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tional equilibrium CAPM also emerges as a special case which guarantees that downside risk

models do at least as well in explaining market data as the standard asset pricing model.

Indeed, several studies provide empirical support for models featuring loss aversion. For

example, Ang et al. (2006) find a cross-sectional equity premium for sensitivity to downside

market movements of about 6% per annum in the post-1963 period. More recently, Botshekan

et al. (2013) propose a four-way decomposition of the market beta which separates between

upside and downside "bad" and "good" betas in the sense of Campbell and Vuolteenaho

(2004):

Rei = λ+c β
+
i.c + λ−c β

−
i.c + λ+d β

+
i.d + λ−d β

−
i.d + ei. (15)

In Equation (15), the upside and downside cash-flow and discount-rate betas are defined as

β+i,c ≡
Covt (ri, Ncm |Nm > 0)

V art (Nm |Nm > 0)
, (16)

β−i,c ≡
Covt (ri, Ncm |Nm ≤ 0)

V art (Nm |Nm ≤ 0)
, (17)

β+i,d ≡
Covt (ri,−Ndm |Nm > 0)

V art (Nm |Nm > 0)
, (18)

β−i,d ≡
Covt (ri,−Ndm |Nm ≤ 0)

V art (Nm |Nm ≤ 0)
, (19)

respectively. The authors document large risk premia for downside cash-flow risk in a cross

section of US common stocks traded on the NYSE, AMEX, and NASDAQ exchanges. In

a related study, Galsband (2012) finds evidence on the downside risk exposure of interna-

tional stock returns in fourteen major industrialized economies around the world. She shows

that differences in returns on value and growth portfolios are largely attributed to assets’

reagibilities to market’s downside shocks: International value (growth) stock returns are de-

termined by the market’s permanent (temporary) downside shocks. This literature, however,
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leaves unexplored whether the downside betas of value and growth stocks with the market

are caused by assets’cash-flow or discount-rate components—a question we address in this

paper.

C. Eight-Beta Decomposition

The importance of firm-level fundamentals has been highlighted by Campbell et al. (2010)

who show that high sensitivities of value (growth) stocks to the market’s cash-flow (discount-

rate) shocks can be driven back to the cash-flow fundamentals of value and growth compa-

nies. Ang et al. (2006), among others, emphasize the role of asymmetric preferences for

understanding of common variation in stock prices.

In this paper, we combine the two views and ask whether firms’downside risks with

market cash flows are determined by the characteristics of firms’cash flows, or whether they

are instead driven by changes in firms’opportunity cost of capital investors apply to value

assets. To approach this issue, we break the beta of a stock with the market portfolio into

eight components related to future market-wide and firm-level cash flows and discount rates

in up and down markets:

β+i,cc ≡
Covt (Nci , Ncm |Nm > 0)

V art (Nm |Nm > 0)
, (20)

β+i,dc ≡
Covt (−Ndi , Ncm |Nm > 0)

V art (Nm |Nm > 0)
, (21)

β+i,cd ≡
Covt (Nci ,−Ndm |Nm > 0)

V art (Nm |Nm > 0)
, (22)

β+i,dd ≡
Covt (−Ndi ,−Ndm |Nm > 0)

V art (Nm |Nm > 0)
, (23)

β−i,cc ≡
Covt (Nci , Ncm |Nm ≤ 0)

V art (Nm |Nm ≤ 0)
, (24)

β−i,dc ≡
Covt (−Ndi , Ncm |Nm ≤ 0)

V art (Nm |Nm ≤ 0)
, (25)

β−i,cd ≡
Covt (Nci ,−Ndm |Nm ≤ 0)

V art (Nm |Nm ≤ 0)
, (26)
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β−i,dd ≡
Covt (−Ndi ,−Ndm |Nm ≤ 0)

V art (Nm |Nm ≤ 0)
. (27)

We employ an empirical approximations of the ICAPM of Merton (1973) to test the asset

pricing implications of the eight-beta decomposition:

Rei = λ+ccβ
+
i,cc +λ−ccβ

−
i,cc +λ+cdβ

+
i,cd +λ−cdβ

−
i,cd +λ+dcβ

+
i,dc +λ−dcβ

−
i,dc +λ+ddβ

+
i,dd +λ−ddβ

−
i,dd + ei. (28)

To estimate the factor prices the portfolio betas, we use a two-stage procedure outlined in

Fama and MacBeth (1973). In the first stage, for each portfolio i, we run a time-series

regression of cash-flow or the negative of discount-rate news on portfolio i, Nci or −Ndi ,

on the market cash-flow or the negative of market discount-rate news, Ncm or −Ndm , for

upside and downside markets separately. Periods with total market news above (below) its

mean are defined as upside (downside) markets. We then scale the obtained slope coeffi cient

appropriately to arrive at the beta estimates in Equations (20)-(27). In the second stage,

we run a cross-sectional regression of average excess returns Rei on the estimated betas to

arrive at the factor prices. Standard errors are adjusted for the fact that the regressors are

generated in line with Shanken (1992).

III. Data

Our empirical analysis is conducted on US data sampled at monthly frequency. This sec-

tion first summarizes the properties of test asset returns and then turns to state variables

employed for the estimation of news series.

A. Portfolio Data

Two sets of benchmark value-weight stock portfolio returns are employed in this study. The

first is a set of 25 double-sorted portfolios, the second is a set of 30 single-sorted portfolios.
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These data are constructed by Eugene F. Fama and Kenneth R. French and freely available

in the online library of Kenneth R. French. The sample period is monthly running from

January 1929 to September 2012.

A.1. 25 Double-Sorted Portfolios

The portfolios are formed from an independent sort of all stocks in NYSE, AMEX, and

Nasdaq in the CRSP Monthly Stock Database into quintiles based on size, i.e. market

equity, and the ratio of book equity to market equity. The portfolios are constructed at the

end of June of each calendar year as intersections of five size (S) and five book-to-market (B)

portfolios. For example, small growth portfolio is denoted by S1B1 and big value portfolio

is denoted by S5B5. The market equity is the market capitalization at the end of June. The

book-to-market ratio is computed as a ratio of book equity at the last fiscal year end of the

prior calendar year divided by market equity at the end of December of the prior year. Firms

with negative book equity are not included in any portfolio. Due to their stable properties

across different samples and frequencies, these portfolios are typically used in the literature

to examine the performance of various asset pricing models. Table 1 shows a substantial

dispersion in the average excess returns across the 25 portfolios. Stocks with lowest book-to-

market equity realized excess returns between 4.68 and 7.61 percent per year while stock with

highest book-to-market equity earn on average between 10.21 and 15.91 percent per year.

The return differential between value and growth stocks varies from 3.79 percent per year for

biggest size category stocks to 11.25 percent per year for smallest size category stocks. In line

with Fama and French (2012), the value premium is declining with size. Furthermore, small

stocks on average outperform big stocks within the same book-to-market quintile, except for

small growth stocks.

[about here: Table 1]

12



A.2. 30 Single-Sorted Portfolios

In addition, we use a second set of assets consisting of 10 size-, 10 book-to-market- and 10

past performance or momentum sorted portfolios of the same stocks traded in NYSE, AMEX,

and Nasdaq. Our rationale for considering these portfolios is that firm characteristics related

to size, book-to-market, and momentum build the basis for three- and four-factor models in

Fama and French (1993) and Carhart (1997) to explain returns on other assets.

B. VAR State Variables

We work with both aggregate and firm-specific variables as the elements of the state vector.

In the following we describe these data.

B.1. Aggregate VAR

In specifying the aggregate VAR, we choose a state vector consisting of four variables: excess

market return, the small-stock value spread, the market’s smoothed price-earnings ratio, and

short term interest rate. The methodology outlined in Section II requires the first element

to be the excess market return. As an empirical proxy, the literature typically employs the

difference between the log return on the CRSP value-weight index and the log risk-free rate.

The excess return series is provided in the online data library of Kenneth R. French.

The second variable, small-stock value spread, is motivated by the ICAPM itself (see

Campbell and Vuolteenaho (2004)). Further studies suggest that growth stocks payoff in a

distant future or depend heavily on external financing and are therefore particularly exposed

to fluctuations in equity market conditions. This series are also calculated from data made

available by Kenneth R. French on his web site. The appendix to Campbell and Vuolteenaho

(2004) presents further details on construction of this variable.

The third variable, the log smoothed market’s price-earnings ratio, is motivated in Camp-

bell and Vuolteenaho (2004) by the low predictability of earnings growth. To circumvent

cyclical spikes in earnings, this variable is constructed from the data provided on the web site
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of Robert Shiller as the log ratio of the S&P 500 price index to a ten-year moving average

of the S&P 500 earnings. Campbell and Vuolteenaho (2004) include additionally the yield

spread between long-term and short-term bonds in the state vector. Over our sample period,

this variable is, however, insignificant and we exclude it from the state vector. None of our

conclusions appear affected by this omission. In particular, we obtain qualitatively similar

results if we stick with the original Campbell and Vuolteenaho (2004) specification.

Finally, we follow Botshekan et al. (2013) and Ang and Bekaert (2007) to include the

short term interest rate as the fifth element of the VAR system. The data on the annualized

risk-free rate is available in the online library of Kenneth R. French.

Several recent studies argue that it is important to include dividend yield as a state

variable. The use of dividend yield as a predictor of excess stock returns is motivated

theoretically (Campbell and Shiller (1988)) and empirically (Ang and Bekaert (2007)). None

of our conclusions change once we additionally introduce the dividend yield as fifth state

variable. However, we find that the price-earnings ratio has a stronger forecasting ability

for excess returns than the dividend yield. In particular, if both price-earnings ratio and

dividend yield enter the return forecasting equation, the coeffi cient on the dividend yield

turns significantly negative while the price-earnings ratio pertains its power. For this reason,

we opt for not including the dividend yield in our benchmark specification but explore its

role in details in the next section.

Table 2 reports the benchmark characteristics of the first-order VAR model including

a constant, log excess market return, small-stock value spread, price-earnings ratio, and a

short-term interest rate for the sample period from December 1928 to September 2012. The

VAR is estimated using OLS and employing ρ = 0.9957. Each row of Table 2 corresponds to

a different dependent variable listed in the header of the row. OLS t-statistics are reported

in parentheses below the coeffi cient estimates. The first six columns report coeffi cients on a

constant and five explanatory variables listed in the column header; the last column gives

the adjusted R
2
statistics. The correlation between the implied cash-flow news and the
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discount-rate news is -0.20.

[about here: Table 2]

The top row of Table 2 is indicative of the forecasting potential of state variables for

market returns.1 As documented in the earlier literature, the momentum property is strongly

pronounced for monthly returns. In line with previous studies, the past small-stock value

spread negatively forecasts the stock market with a t-statistic of 2.44. Former research

indicates that a higher price-earnings ratio is associated with lower returns. Our estimation

strongly supports this result. Finally, the short term interest rate negatively predicts returns

in line with Ang and Bekaert (2007) and Botshekan et al. (2013). The R
2
statistic for the

return equation is 2.40% which appears a plausible number for a monthly sample.

The next rows summarize the forecasting power of the VAR system for the remaining

state variables. Overall, R
2
statistics are high and the autoregressive coeffi cients are all very

close to unity which raises some diffi cult statistical issues (e.g. Campbell et al. (2010));

caution is appropriate when interpreting the results.

B.2. Firm-Level VAR

In our benchmark specification, we employ firm characteristics to forecast portfolio returns.

Our robustness analysis tests the sensitivity of our conclusions when aggregate market state

variables enter both market-wide and firm-level VARs. Our main conclusions remain qual-

itatively similar in both cases and hence cannot be attributed to the set of variables in the

system.

For the main specification of the firm-level VAR, the following three state variables are

employed. The first is the log value-weighted portfolio return. Following Campbell et al.

(2010), we use market-adjusted returns obtained by subtracting the market return from the

1The appendix of Campbell and Vuolteenaho (2004) warns that the interpretation of persistent coeffi -
cients depends on the correlation structure of innovations in forecasting variables with unexpected returns.
In our case, this concern applies to the errors in price-earnings ratio which reveal a correlation of beyond 0.7
with the unpredicted component in the market return.
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portfolio return in each time period. The market return is the return on the value-weight

CRSP index. The second state variable is the log book-to-market equity ratio, measured

as a value-weighted average of book-to-market equity of all stocks in the portfolio. We

used an alternative measure of book-to-market equity—calculated as a ratio of the sum of

book equities to the sum of market equities of all stocks in the portfolio—interchangeably

and obtained similar results. We include this variable in the VAR to capture the well-known

value effect in returns (Graham and Dodd (1934)). The third state variable is the log market

equity, measured as the sum of market equities of all stocks in the portfolio. This variable

enters the VAR to control for the size effect in financial market data (Banz (1981)).

We estimate a separate VAR system for each portfolio. We summarize the outcome

as follows. There is a modest degree of momentum in monthly individual stock returns.

The book-to-market equity typically positively predicts future returns. By contrast, the

coeffi cient on the market equity changes sign and is mostly insignificant. This observation

is related to a declining size effect documented by Horowitz et al. (2000).

IV. Empirical Evidence

In this section, we summarize our empirical findings. We start by discussing the cross-

sectional evidence and compare the performance of the eight-beta model with other popular

return decompositions. We then explore the risk premium contributions of each risk com-

ponent to average excess returns on value and growth portfolios. Finally, we present an

extensive sensitivity analysis.

A. Baseline Risk Premia Estimates

Table 3 summarizes our main results. It presents the second-stage Fama-MacBeth (1973)

estimates in percent per annum when using 25 size- and book-to-market sorted portfolios as

test assets. The estimated models are (i) the standard CAPM, (ii) the two-beta ICAPM with
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cash-flow and discount-rate risks proposed by Campbell and Vuolteenaho (2004), (iii) the

four-beta ICAPM with market and firm-level cash-flow and discount-rate risks proposed by

Campbell et al. (2010), (iv) the four-beta ICAPM with upside and downside cash-flow and

discount-rate risks proposed by Botshekan et al. (2013), and (v) the eight-beta ICAPM with

upside and downside market-wide and firm-level cash-flow and discount-rate risks proposed

in this paper. For each model, it gives the estimated risk premia along with Shanken (1992)

corrected t-statistics in parentheses, the associated R2 corrected for degrees of freedom, as

well as the mean squared pricing error (MSPE) and mean absolute pricing error (MAPE)

are in percent per annum. The sample period of returns covers January 1929 to March 2012.

[about here: Table 3]

Our main findings are easily summarized. The standard static CAPM of Sharpe (1964)

and Lintner (1965) fails disastrously in explaining the cross-sectional variation in average

returns (Fama and French (1992)). The price of market risk is estimated with a large error,

and the poor model fit is reflected in a low R2 of less than 4.5%. The poor model fit translates

in a total mean squared pricing error exceeding the annual risk premium.

There is a substantial improvement in terms of general fit once time-variation in discount

rates is taken into account as in the two-beta ICAPM version of Campbell and Vuolteenaho

(2004). The specification in column (ii) explains about 28% of the cross-sectional dispersion

in stock returns. Campbell and Vuolteenaho (2004) report measures of fit of roughly 50%

for the sample period 1963-2001. Our estimates over the post-1963 period support higher

adjusted R2 measures of up to 46%. The estimated risk premium for market cash-flow news

is about 35% p.a. over the period 1929-2012 and is close to 70% p.a. for the 1963-2012

sample. Campbell and Vuolteenaho (2004) report estimates of a similar order of magni-

tude. In line with previous findings, there are large standard errors associated with these

estimates. However, the cash-flow premium is significantly different from zero, in contrary

to the discount-rate premium estimates. Campbell and Vuolteenaho (2004) show that dif-

ferences in so called "bad" cash-flow betas can largely explain the pattern in average stock
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returns on value and growth portfolios in the post-1963 period. More recently, Galsband and

Nitschka (2013) employ the two-beta model to study common determinants behind equity

and foreign exchange markets. They find that the failure of the uncovered interest rate parity

(UIP) can be partly rationalized by currency investment sensitivities to the stock market

cash-flow news.

Column (iii) summarizes baseline risk premia estimates of a four-beta model in Campbell

et al. (2010) evaluated in Koubouros et al. (2010). Campbell et al. (2010) argue that firm—

level shocks constitute an important risk characteristics on top of market news. The authors

show that value and growth stocks’ fundamentals are responsible for assets’ sensitivities

to market’s cash-flow and discount-rate shocks. Consistent with the theory, our estimates

support a significant risk premium for sensitivities to market cash-flow shocks. In line with

Koubouros et al. (2010), we find higher risk premia for assets’comovement with market

cash flows (λcc and λdc) than for assets’reagibilities to market discount rates (λcd and λdd).

The model fit of about 55% is reasonable and broadly of the same order of magnitude as

previously documented.

The four-beta ICAPM of Botshekan et al. (2013) in column (iv) generates a similar

general fit but slightly lower pricing errors. It reveals two additional important insights about

the determination of risk premia on equity markets. First, the cross-section of returns reflects

a downside risk exposure. Secondly, both the downside cash-flow and the downside discount-

rate obtain a significant compensation with the former exceeding the latter. In line with other

studies, we find that the downside cash-flow beta carries the largest premium. Interestingly,

this conclusion obtains for a VAR specification with dividend yield (e.g. Botshekan et al.

(2013)) and without this variable (e.g. Galsband (2012)).

Finally, column (v) summarizes the results for our new eight-beta decomposition. Our

key finding is that systematic risks embodied in stocks’cash-flow sensitivities to permanent

aggregate shocks during market declines command a positive and highly significant premium.

This result survives a battery of robustness checks we discuss below. The risk premium
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associated with β−i,cc’s of 33% p.a. is high but in line with cash-flow premia reported in the

finance literature. Furthermore, our estimates support the importance of downside risk in

asset pricing: The coeffi cients of λ−cc, λ
−
cd, λ

−
dc, and λ

−
dd are estimated highly significantly,

albeit the estimates of λ−cd and λ−dd are negative. Chen and Zhao (2009), among others,

document negative risk premia associated with market discount rates.

The estimates in Table 3 arise from market-wide cash-flow and discount-rate news ob-

tained from a VAR including market return, value spread, price-earnings ratio and the

riskless interest rate summarized in Table 2. The firm-level cash-flow and discount-rate

news terms are estimated in a separate VAR relying on excess portfolio return, portfolio

book-to-market equity, and average firm size. In an extensive analysis, we document that

changes in specification (e.g. with respect to the vector of state variables, test assets or sam-

ple period choice) can affect the estimates of premia associated with λ−cd, λ
−
dc, and λ

−
dd quite

substantially. Depending upon specification, λ−cd, λ
−
dc, and λ

−
dd switch signs and are instable

in statistical terms. In stark contrast to this result, we find that firm’s cash-flow sensitivities

to downside aggregate market cash flows remain the main driver behind the cross-section of

stock excess returns. This point becomes particularly striking in the post-1963 period when

cross-sectional differences in β−i,cc’s emerge as the only source of equity premium. An addi-

tional important point concerns the overall model fit. The eight-beta decomposition explains

robustly a large part of cross-sectional risk premia with an adjusted R2 measure of about

90%. Across different specifications, the R2 statistic lies typically in the range between 80%

and 90% but never drops below the 60% mark. Finally, our model generates significantly

lower pricing error compared to benchmark models in columns (i)-(iv). In particular, the

squared pricing error is about 14 times smaller than in the case of static CAPM and more

than 5 times smaller than in the case of four-beta empirical ICAPM approximations—the

point we highlight in the next subsection

In sum, our results emphasize the importance of downside fluctuations in the slow-moving

persistent component of fundamentals in understanding the risk exposure of assets. This

19



finding contributes to a large body of studies in financial economics—initiated by Bansal and

Yaron (2004) and continued by Parker and Julliard (2005), Bansal et al. (2005), Jagannathan

and Wang (2007), Da (2009), and many others—pointing towards long-run risks as the key

determinant of expected returns.

B. Pricing Errors

In this subsection, we take a closer look at the pricing errors generated by the static CAPM

as well as the discrete time versions of the Merton’s (1973) ICAPM. Table 4 reports the

individual pricing errors for each model we investigate in percent per annum from the Fama-

MacBeth regressions presented in Table 3. The table lists the errors for each of the 25 size and

book-to-market sorted Fama-French portfolios. S1 denotes portfolios with the smallest firms

(measured by the market equity), and S5 includes portfolios with largest firms. Similarly,

B1 refers to portfolios with lowest book-to-market ratio firms—labeled as "growth stocks",

and B5 includes portfolios with the highest book-to-market equity firms—labeled as "value

stocks".

[about here: Table 4]

Column (i) in Table 4 reports the individual portfolio pricing errors generated by the

standard CAPM. Lettau and Ludvigson (2001) note that the main source of the failure

of the CAPM is the mispricing of portfolios for extreme growth (B1) and extreme value

(B5) stocks within the same size category. Within each size category, the CAPM predicts

the largest errors for S1B1 and S1B5, S2B1 and S2B5, and S3B1 and S3B5. For each of

these three pairs, B5 stocks earn higher average returns than B1 stocks but their market

betas are of similar size. Hence, the CAPM overpredicts average returns on growth stocks

and underpredicts average returns on value stocks. This explains negative errors for B1

portfolios and positive errors for B5 portfolios. In fact, this regularly is also pronounced

for the remaining two pairs, S4B1 and S4B5, and S5B1 and S5B5, albeit less strongly. In
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a cross-section of the five models presented in Table 4, the CAPM tends to produced the

largest errors in absolute values for 11 out of 25 portfolios including S1B1, S1B5, S2B1,

S2B4, S2B5, S3B1, S3B4, S4B1, S4B4, S5B1, and S5B2.

Column (ii) shows that the two-beta ICAPM also has diffi culties in fitting the data

precisely. In general, the pricing errors in column (ii) are lower than in column (i) but sub-

stantially higher than in columns (iii)-(v). Similar to the static CAPM, the two-beta ICAPM

as well as the four-beta ICAPM in column (iii)—albeit to a smaller extent—have low power

in explaining the value effect in the data. The four-beta representation which distinguishes

between upside and downside risks as well as our eight-beta decomposition with market-wide

and firm-level upside and downside betas tend to do better in this respect. In general, how-

ever, the eight-beta model tends to strongly outperform other standard benchmark models.

In a cross-section of the five models summarized here, the eight-beta decomposition produces

the lowest errors in roughly a half of all portfolios.

C. Risk Premia Contributions

Our findings in previous subsections highlight the statistical importance of comovement

between market’s and stocks’cash flows in times of bear markets for the cross-section of

value and growth portfolios in the data. Economically, this result can be attributed to (i)

differences in downside cash-flow betas of US firms to aggregate market cash-flow news,

(ii) high risk premium estimates associated with these betas or both. To investigate this

question, we perform an overlapping rolling window analysis in the style of Cochrane (2005).

To alleviate any concerns that our results are due to the assumption of fixed betas over

the evaluation period, we relax this constrain in this subsection. Instead of constant betas,

an alternative approach to asset pricing assumes that betas change continuously during the

sample period. Time-variation in betas makes it possible to perform an in- (and later an

out-of-) sample Fama-MacBeth (1973) two-stage analysis with over time changing betas

estimated using overlapping rolling windows.
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We proceed as follows. First, for each month t, we estimate the eight betas defined in

Equations (20)-(27) for each test asset separately in a recursive manner over the subsample

of a rolling window interval. For instance, the first 90-month window spans January 1929

to June 1936 and the last April 2005 to September 2012; so we analyze 916 overlapping 90-

month windows in total. Second, each month we run a cross-sectional regression of average

returns over the same rolling window on the estimated betas. In this way, we can compute a

time series of the risk premia components which correspond to the eight types of time-varying

betas. Table 5 presents the cross-section of β+i,cc, β
−
i,cc, β

+
i,cd, β

−
i,cd, β

+
i,dc, β

−
i,dc, β

+
i,dd, and β

−
i,dd’s

computed as time-series averages of the respective betas over the 90-month rolling windows.

The pattern in full sample betas strongly reminds of the pattern in average time-varying

betas, however, one important advantage of the rolling-window analysis is that it takes into

account any changing property of a series over time and diversifies away non-systematic

effects in the data by averaging over the number of intervals.

[about here: Table 5]

The structure of the betas matrix in Table 5 is similar to the presentation in Table 1. In

line with the previous notation, S1 denotes the lowest market equity quintile, S5 the highest

market equity quintile, B1 the lowest book-to-market equity quintile, and B5 the highest

book-to-market equity quintile. The firm-level and aggregate market news components are

as in our benchmark case discussed in Table 3. Column B5—B1 at the right edge reports

differences between extreme value and extreme growth in each size category. Table 5 reveals

a number of interesting observations.

First, value firms’cash flows have a stronger tendency to comove with market-wide cash

flows than growth stocks’cash flows. This finding is generally true and provides further sup-

port to Campbell et al. (2010). It pertains to both upside and downside market fluctuations.

Extreme value portfolios have high (positive) β+i,cc’s and β
−
i,cc’s. In stark contrast, extreme

growth portfolios have low (negative) β+i,cc’s and β
−
i,cc’s. We take this to be evidence that

firms’cash-flow sensitivities to market’s cash flows are the drivers behind the cross section
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of average returns of stock portfolios formed on size and book-to-market equity ratio. More-

over, growth stocks tend to offer insurance, while value stocks hide statistically grounded

exposures to fluctuations in permanent shocks. Both β+i,cc’s and β
−
i,cc’s can be informative

about the general pattern in average returns and the risk-return trade-off on equity markets.

Second, there is an opposite pattern in sensitivities of assets’cash flows to the aggre-

gate market discount rates. The estimates of β+i,cd’s and β
−
i,cd’s suggest that growth stocks’

fundamentals hide a greater reagibility to the market’s discount-rates than the respective

value stocks’fundamentals. This point underpins Campbell et al. (2010) who argue that

growth stocks are not merely "glamour stocks" whose systematic risks are driven by investor

sentiment. We find that the systematic risks of low book-to-market firms are primarily due

to the systematic risks of their fundamentals.

Finally, firms’discount rates have generally very low and often zero sensitivities to mar-

ket’s discount-rate news. This observation holds true for β+i,dc, β
−
i,dc, β

+
i,dd, as well as β

−
i,dd’s,

for both value and growth stocks, in upside and downside markets. Firms’discount rates

appear less informative about systematic differences in returns on value and growth stocks

in contrast to firms’cash flows. This results emphasizes that systematic risks embodied in

stocks’cash flows are the key in understanding the risk exposure of assets. This is one of

our central insights.

To further explore this issue, Table 6 displays the average equity premium contributions of

the eight risk factors explored in this paper. We obtain the average contributions of λ+ccβ
+
i,cc,

λ−ccβ
−
i,cc, λ

+
cdβ

+
i,cd, λ

−
cdβ
−
i,cd, λ

+
dcβ

+
i,dc, λ

−
dcβ
−
i,dc, λ

+
ddβ

+
i,dd, and λ

−
ddβ
−
i,dd’s to the total average equity

premium as time-series averages of the respective λ·jtβ
·
i,jt products where β

·
i,jt is the cross-

sectional mean of beta of upside or downside component of risk factor j over the 90-month

rolling window in month t, and λ·jt is the estimated risk premium for upside or downside

component of risk factor j from monthly recursive cross-sectional regressions of average

returns over the 90-month rolling window t on a constant and betas over the same rolling

window. To compute the cross-sectional betas β·i,jt, specification (i) relies on a large pool of
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all 25 size- and book-to-market portfolios; specification (ii) considers the five extreme value

portfolios with the highest book-to-market ratios; and specification (iii) averages across five

extreme growth portfolios with the lowest book-to-market ratios.

[about here: Table 6]

Table 6 highlights a number of important points. First, column (i) demonstrates that over

the complete sample period 1929-2012 firms’fundamentals embodied in value and growth

portfolios’ cash flows contribute much stronger to the total equity premium than firms’

discount rates, i.e. λ+ccβ
+
i,cc, λ

−
ccβ
−
i,cc, λ

+
cdβ

+
i,cd, and λ

−
cdβ
−
i,cd’s exceed λ

+
dcβ

+
i,dc, λ

−
dcβ
−
i,dc, λ

+
ddβ

+
i,dd,

and λ−ddβ
−
i,dd’s, respectively. Furthermore, except for the risks associated with discount-rate

sensitivities of firms to market’s cash flows (λ+dcβ
+
i,dc and λ

−
dcβ
−
i,dc), it generally holds true

that risk exposure in downside markets is typically reflected in an economically higher total

contribution than risk exposure in upside markets, i.e. λ−ccβ
−
i,cc is greater than λ

+
ccβ

+
i,cc, λ

−
cdβ
−
i,cd

is greater than λ+cdβ
+
i,cd, and λ

−
ddβ
−
i,dd is greater than λ

+
ddβ

+
i,dd. Most importantly, our results

suggest that in a cross-section of value and growth portfolios the downside systematic risks

embodied in stocks’ cash-flow sensitivities to permanent aggregate shocks during market

declines carry the highest premium.

Examining the rest of table reveals at least two further interesting insights. Common price

movements in value and growth firms can be attributed to the observation that sensitivities

related to firms’ cash flows are generally more important for equity premium formation

than sensitivities related to firms’discount rates. Columns (ii) and (iii) support that for

both value as well as growth portfolios separately, it holds true that λ+ccβ
+
i,cc exceeds λ

+
dcβ

+
i,dc,

λ−ccβ
−
i,cc exceeds λ

−
dcβ
−
i,dc, λ

+
cdβ

+
i,cd exceeds λ

+
ddβ

+
i,dd, and λ

−
cdβ
−
i,cd exceeds λ

−
ddβ
−
i,dd. Interestingly,

columns (ii) and (iii) also point towards systematic differences in risk exposure of high and low

book-to-market equity firms: Excess returns on value stocks are driven by their sensitivities

to downside markets. Excess returns on growth stocks, in contrast, reflect their sensitivities

to upside markets. Except for λ−ccβ
−
i,cc and λ

+
ccβ

+
i,cc, value stocks receive greater premium

components for λ−cdβ
−
i,cd, λ

−
dcβ
−
i,dc and λ

−
ddβ
−
i,dd’s than for λ

+
cdβ

+
i,cd, λ

+
dcβ

+
i,dc and λ

+
ddβ

+
i,dd’s. Higher
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total contribution for λ+ccβ
+
i,cc versus λ

−
ccβ
−
i,cc mirrors higher β

+
i,cc’s of extreme book-to-market

stocks compared to their β−i,cc’s, even though λ
−
cc is generally associated with higher economic

and statistically significant estimates as opposed to λ+cc. Finally, in contrast to value stocks,

growth stocks premia are mainly associated with upside markets, i.e. λ+ccβ
+
i,cc, λ

+
cdβ

+
i,cd, λ

+
dcβ

+
i,dc

and λ+ddβ
+
i,dd’s exceed economically λ

−
ccβ
−
i,cc, λ

−
cdβ
−
i,cd, λ

−
dcβ
−
i,dc and λ

−
ddβ
−
i,dd’s, respectively, for

firms with lowest book-to-market ratios.

D. Robustness Analysis

This section provides details on robustness checks. We investigate the sensitivity of our

eight-beta model to a broad range of alternative choices of various state variables. We in-

clude both firm characteristics and economic aggregates such as dividend yields, simple and

relative risk-free rate, term yield and default spreads in the vector of state variables. We

employ an alternative estimation technique which allows to calculate the cash-flow news di-

rectly and independently of the discount-rate news. We work with other test assets such as

10 size-, 10 book-to-market-, and 10 past performance sorted portfolios or 30 industry-sorted

portfolios. We allow for various thresholds for downside versus upside risks, change the sam-

ple period, control for size and value effects, change the value of the linearization parameter,

and explore the in- and out-of-sample properties of the model. Our tests confirm the impor-

tance of downside fluctuations in the slow-moving persistent component of fundamentals in

understanding the risk exposure of assets.

D.1. Dividend Yield and Variation in the Set of State Variables

The importance of the dividend yield for the precision of the VAR forecasts is emphasized

in Campbell et al. (2010), Engsted et al. (2012), and Chen and Zhao (2009) on theoretical

grounds and based on the strong empirical ability of the dividend yield to produces unbi-

ased news forecasts. Chen and Zhao (2009) show that the return decomposition approach

in Campbell and Shiller (1988) and Campbell (1991) can be sensitive the choice of state
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variables. Our benchmark VAR model includes excess returns, small-stock value spread, the

price-to-earnings ratio, and the interest rate. Experiments with a fifth variable, the dividend

yield, lead to qualitatively similar, often even slightly stronger conclusions. However, a re-

turn predicting equation which includes both price-to-earnings ratio and the dividend yield

generalizes implausible estimates on the dividend yield. In general, we find that over our

sample period, the price-to-earnings ratio beats different measures of dividend yield and do

not include the latter in the vector of benchmark state variables.

To address the concern of Chen and Zhao (2009), this subsection discusses several VAR

specifications which include the dividend yield to demonstrate that our conclusions are un-

affected by this assumption. Table 7 gives the cross-sectional estimates for three sets of

set variables. To extract market cash-flow and discount-rate news, specification (i) differs

from our benchmark specification by replacing the price-earnings ratio with the dividend

yield computed from the data set of Robert Shiller as a difference between log real dividends

and log real prices on the S&P 500 index. Specification (ii) employs a different measure of

dividend yield based on a twelve-month trailing average. Finally, specification (iii) uses a

measure of dividend yield computed as a ratio of previous period dividend to current stock

price. As in the baseline case, we estimate portfolio-specific cash-flow and discount-rate

news terms separately in a VAR with firm-level characteristics. We relax this assumption

subsequently.

[about here: Table 7]

We find that minor changes in the VAR specification have no strong effect on the esti-

mates. In particular, the estimate of λ−cc remains a significant determinant of average returns

on value and growth portfolios. Two other downside risk exposures (λ−cd and λ
−
dd) are priced,

albeit with a negative sign. The model’s explanatory power is robust with an adjusted R2 of

about 90%. Most importantly, our empirical evidence supports the view that differences in

the sensitivities of firms’cash flows to permanent market shocks in times of market decline
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are the key to rationalize the cross-sectional dispersion in average stock returns. This rela-

tion is unaffected by different proxies of the dividend yield and minor variation in the vector

of state variables.

In a next exercise, summarized in Table 8, we follow Koubouros et al. (2010) and

employ the same set of state variable to extract both market-wade and portfolio-specific news

components. Again we consider three alternative sets of state variables in line with Table 7.

Our estimates suggest that this design favours risks associated with the response of firms’

discount-rate shocks to permanent innovations in market returns both in times of bear and

bull markets. However, our findings further underpin the importance of downside fluctuations

in the slow-moving persistent component of fundamentals across all specifications.

[about here: Table 8]

Finally, we examine the robustness of our benchmark results to alternative firm-level

state variables. Following the benchmark case, we compute the market-wide news from a

VAR presented in Table 2. To calculate the firm-level news, Table 8 relies on three sets

of firm-specific characteristics. Specification (i) includes excess portfolio return, portfolio

book-to-market equity and average firm size. Specification (ii) employs a different measure

of portfolio book-to-market equity. Specification (iii) additionally includes portfolio book

equity. Table 9 presents the details of these pricing exercises.

[about here: Table 9]

The results confirm our benchmark findings in Table 3 but are associated with slightly

lower measures of fit. The latter drops to 74% in specification (iii), however, the general

picture remains unaffected. All models in Table 9 show that average stock returns on book-

to-market and size sorted stock portfolios are related to their cash-flow sensitivities to the

market’s cash-flow news components in downside markets. Firms’cash-flow sensitivities to

the permanent market news are not priced in any of the specifications under study.
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In addition, we experimented with the real dividend growth, stock variance, and a differ-

ent measure of price-earnings ratio based on the one-year moving average of past earnings

(Chen and Zhao (2009)). We have also worked with inflation (Chen and Zhao, 2009) and a

different measure of value spread obtained from 25 double-sort Fama-French portfolios. We

conclude that our findings are largely independent of the underlying state variables in the

estimation.

D.2. Other Test Assets

This subsection examines the sensitivity of our findings to the choice of test assets. The

portfolios employed in our empirical tests are formed on a single-sort of firms according to

firms’market values, book-to-market ratio, and past stock performance. The rationale for

examining these portfolios is that size, book-to-market, and momentum based characteristics

build the basis for risk factors used to explain variation in returns on other test assets.

Following a similar empirical methodology, Bansal et al. (2005) show that the cross-section

of these portfolio returns reflects cash-flow risks embodied in consumption growth. While

differences in their cash-flow betas account for more than 60% of the variation in risk premia,

our eight-beta model—depending on specification—captures about 70%-85% of these excess

returns.

Table 10 gives results for three sets of VAR specifications we introduced before. Spec-

ification (i) includes excess returns, dividend yield, small-stock value spread, and short-

term interest rate. Specification (ii) employs a different measure of dividend yield based on

twelve-month trailing average. Specification (iii) employs a different measure of dividend

yield computed as a ratio of previous period dividend to current stock price. Our findings

strongly support the relative importance of firms’cash-flow characteristics relative to their

discount-rate components: λ+cc, λ
−
cc, λ

+
cd, and λ

−
cd’s exceed in absolute values λ

+
dc, λ

−
dc, λ

+
dd,

and λ−dd’s, respectively. The estimate of λ
+
cc is negative suggesting that strong performance

in good times translates in a discount. In contrary, the coeffi cient λ−cc is highly significant
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and positive suggesting that weak performance in bad times commands a premium. Fur-

thermore, firms’cash-flow sensitivities associated with downside markets command a higher

compensation than in upside markets, i.e. λ−cc exceeds λ
+
cc, and λ

−
cd exceeds λ

+
cd in absolute

values. Finally, taking into account both economic and statistical importance, risks behind

β−i,cc’s and β
−
i,cd’s are the key to explain cross-sectional differentials on the 30 portfolio re-

turns. The estimates of λ−cd are significant albeit negative as indicated by the estimates in

Table 10. Campbell and Vuolteenaho (2004) and Chen and Zhao (2009) similarly report

negative estimates of the discount-rate news for VAR systems based on excess return, term

yield spread, value spread, and price-earnings ratio.

[about here: Table 10]

As an additional exercise, we follow Lewellen et al. (2010) and include 30 US indus-

try portfolios2 in test assets alongside with 25 benchmark size and book-to-market sorted

portfolios in order to reduce commonalities in value and growth portfolios due to the strong

factor structure. Alternatively, we have extended a cross-section of 30 single-sorted portfo-

lios constructed on size, book-to-market and momentum with 30 industry portfolios. Finally,

we have combined 25 double-sorted with 30 single-sorted stock returns. Results from these

exercises are very similar to our benchmark findings and omitted for brevity. None of our

conclusions were affected by the choice of test assets.

D.3. Alternative Downside Risk Specifications

To guard against the possibility that our conclusions are attributed to the specific definition

of downside market risk as periods in which the market news is below zero, in this subsection

we explore other plausible cutoffs. We evaluate three cases in Table 11. Specification (i) is

in line with the measure of downside risk introduced by Bawa and Lindenberg (1977). For

instance, β−i,cc is computed as

2The set of industry portfolios is based on portfolio four-digit SIC code and is kindly provided in the

online library of Kenneth R. French.
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β−i,cc ≡
Covt(Nci , Ncm |rem ≤ rem )

V art(Nm |rem ≤ rem )
, (29)

where rem denotes the time-series mean of excess market return, and all remaining betas are

computed accordingly. In specification (i) downside (upside) markets are defined as periods

in which the unconditional market excess return is below (above) its mean. In specifications

(ii) and (iii) we follow Ang et al. (2006) and use zero rate of return and risk-free rate as

cutoff points to determine up markets and down markets.

[about here: Table 11]

Using either of these alternative cutoff points yields very similar qualitative results. As

emphasized by Ang et al. (2006), downside risk premia are indeed driven by asymmetric

treatment of losses and gains and not by the particular benchmark specification. Changes

in the downside risk specification do not matter. Across the three specifications we consider

in Table 11, λ−cc emerges as the only significant determinant of differences in equity premium

across assets.

D.4. Direct Cash-Flow News Estimation

So far, this paper has followed a voluminous literature in macroeconomics and finance ini-

tiated by Campbell (1991) and Campbell and Ammer (1993) to estimate the discount-rate

news from a VAR, while backing out the cash-flow news as a residual from an identity. Chen

and Zhao (2009) discuss several limitations of this procedure. In particular, they point out

that the treatment of the cash-flow component in return decompositions as a residual might

unfavorably affect the discount-rate premia and overstate the importance of the cash-flow

risks at the same time. Against this backdrop, Engsted et al. (2012) argue that this criti-

cism might be misplaced on grounds of invalid VAR decompositions. In a properly specified

model, the computation method plays no role and it makes not difference whether the cash-

flow news or discount-rate news is backed out residually or estimated directly. Campbell
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et al. (2010) raise a similar argument and show that a correct return decomposition relies

crucially on the choice of the state variables but is not necessarily influenced by the decision

to forecast returns or cash flows.

In this subsection, we address the debate by following the suggestion of Chen and Zhao

(2009) to model both news series directly using two separate VAR systems. This method

acknowledges the fact that there is a noise component in returns which cannot be explained

by permanent shocks to the dividend stream or transitory shocks associated with changes in

discount rates:

Nt+1 = Ñc,t+1 −Nd,t+1 + εt+1, (30)

where the discount-rate news Nd,t+1 is extracted via Equation (3). The cash-flow news Ñc,t+1

can be further identified from a VAR whose first component is the dividend growth rate as

Ñc,t+1 = e1′Λ1w̃t+1, (31)

where Λ1 ≡ ρA1 (I− ρA1)
−1, A1 is the companion matrix and w̃t+1 is the residual vector.

To ensure that our results do not depend on the estimation method or the choice of

state variables, we estimate three alternative VAR models to model Ñc,t+1 directly. Table

12 summarizes our findings. The state variables are dividend growth, market excess return

and dividend yield computed as the log ratio of dividends and prices in specification (i).

Specification (ii) differs from (i) in that it employs a different measure of dividend yield based

on the 12-month trailing average of dividends. Finally, specification (iii) differs from (ii) in

that it additionally includes the short-term interest rate as a state variable. The variables are

motivated by Chen and Zhao (2009) empirically due to their potential to forecast dividend

growth. To mitigate the seasonality of dividends we work with annual growth rates. We

obtain qualitatively similar results for price-to-earnings ratio, stock variance, inflation, and

value spread.
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[about here: Table 12]

We find that several beta components are strongly related to the pattern in average re-

turns across assets. In particular, systematic risks embodied in stocks’cash-flow sensitivities

to permanent aggregate shocks during market declines command a positive and highly sig-

nificant premium. Most interestingly, we find substantially lower estimates of the cash-flow

risk price compared with the our benchmark estimates. Chen and Zhao (2009), Botshekan

et al. (2013) and Galsband and Nitschka (2013) derive a similar conclusion.

D.5. Additional Checks

To verify that our results are not attributed to the specific time period we study, we change

the length of the sample. The period since 1963 has been the subject of much recent research

in the finance literature, and most of the evidence on the book-to-market anomaly is obtained

for the post-1963 period. Campbell and Vuolteenaho (2004) document a particularly poor

performance of the CAPM in the post-1963 period. We evaluated our eight-beta model on

a sample split in 1963 as well as repeated the cross-sectional pricing exercise for two sample

halves before and after 1970 when the total sample is mechanically divided in the middle. In

our tests, firms’cash-flow sensitivities to market-wide permanent news command a positive

premium of about 20% p.a. The premium on downside cash-flow risk is estimated with

a right sign and high precision in all cases. We find that the general performance of the

eight-beta model is slightly lower in the post-1963 or the post-1970 periods. However, the

adjusted cross-sectional R2 measures never falls below 60%.

We did a number of additional experiments. We used other plausible linearization pa-

rameter values, controlled for residual size and book-to-market effects, and employed a rel-

ative measure of downside and upside betas (Ang et al. (2006)). We experimented with

time-varying betas, and tested different window lengths for in- and out-of-sample predictive

regressions. Our results support that the eight-beta model is a powerful tool to describe

financial market data. Our findings highlight the importance of downside fluctuations in
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the slow-moving persistent component of fundamentals in understanding the risk exposure

of assets.

E. Out-Of-Sample Evidence

Finally, we perform in- and out-of-sample regressions with time-varying betas estimated

using overlapping rolling windows. For out-of-sample tests, we calculate the betas using

rolling window as described above but employ the average of the next rolling window out-of-

sample returns. For instance, the first cross-sectional regression relates the betas estimated

over the 90-month window from January 1929 to June 1936 to average returns over July

1936 to December 1943. This test provides an out-of-sample evidence for predictive power of

expected returns. Our exercise suggests that permanent downside risks embodied in firms’

cash-flow components always command a positive and statistically significant premium. This

result holds for different rolling window intervals and across different test assets. The eight-

beta model explains no less than 80% of the cross-sectional variation in average stock returns.

Our results are very similar for news components obtained with a broad range of alternative

state variables and over different sample periods.

V. Conclusions

Financial economists have long relied on a log-linearized approximation to single-out the

permanent and transitory components in excess returns. In this paper, we propose an in-

tuitive extension to this approach which encompasses upside and downside components in

market-wide and firm-level news. Empirically, our results shed light on several important

issues debated in finance at least since the late 1980s.

We show that a large part of cross-sectional variation in excess stock returns in attribut-

able to systematic risks embodied in stocks’cash-flow sensitivities to permanent aggregate

shocks during market declines. At a mechanical level, this result emerges as a natural out-
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come from combining the Campbell et al. (2010) risk story with Botshekan et al. (2013)

return explanation. At a conceptual level, we find that downside betas of value (growth)

stocks with the aggregate market’s cash-flow (discount-rate) shocks are determined by cash-

flow fundamentals of individual growth and value firms. Systematic risks embodied in down-

side stocks’ cash-flow sensitivities to permanent aggregate shocks require a positive and

highly significant premium.

More generally, our results help to explain the common sources of comovement in stock

prices. Common variation in asset prices is a key to measures of systematic risk that ra-

tional investors use to determine the value of market investment. Our evidence points to

the importance of cross-sectional differences in conditional persistent components of stock

fundamentals in understanding the risk-return trade-off in equity markets.
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Table 1: Summary Statistics: Portfolio Returns

The table presents average excess returns and standard deviations in percent per annum

for the 25 Fama-French portfolios sorted by size (S) and book-to-market equity (B). The

sample period is monthly running from January 1929 to September 2012. S1 denotes the

lowest market equity quintile, S5 the highest market equity quintile, B1 the lowest book-to-

market equity quintile, and B5 the highest book-to-market equity quintile.

B1 B2 B3 B4 B5 B5-B1 B1 B2 B3 B4 B5

Mean Std

S1 4.68 9.16 11.78 13.46 15.93 11.25 42.35 36.68 32.10 30.11 33.36

S2 6.55 10.81 12.07 12.40 13.76 7.21 27.90 27.38 25.63 26.55 30.49

S3 7.61 9.85 11.03 11.47 13.12 5.50 26.76 23.03 23.52 23.82 29.97

S4 7.47 8.21 9.79 10.82 12.07 4.60 21.72 21.99 22.43 24.49 31.25

S5 6.42 6.61 7.48 8.00 10.21 3.79 19.01 18.24 20.01 24.09 26.30

39



Table 2: VAR Parameter Estimates

The table shows the OLS parameter estimates for a first-order VAR model including a

constant, the log excess market return (reM), small stock value spread (vs), price-earnings

ratio (pe), and the short-term interest rate (i). OLS t-statistics are in parentheses. Each row

corresponds to a different dependent variable. The first six columns report coeffi cients on

the explanatory variables listed in the column header; the last column shows the adjusted

R
2
statistics in percent. The correlation between the implied cash-flow and discount-rate

news is -0.23.

Variable Constant reM,t vst pet it R2

reM,t+1 0.08 0.11 -0.01 -0.02 -0.02 2.40

(3.97) (3.37) (-2.44) (-3.45) (-1.99)

vst+1 0.02 -0.01 0.99 -0.00 -0.00 98.14

(1.25) (-0.20) (190.34) (-0.30) (-0.53)

pet+1 0.02 0.51 -0.00 0.99 0.00 99.01

(1.80) (24.46) (-0.51) (296.53) (0.28)

it+1 0.02 -0.04 -0.01 0.00 0.97 95.13

(0.82) (-1.32) (-1.70) (0.58) (121.57)
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Table 3: (Intertemporal) Capital Asset Pricing Model

The table reports Fama-MacBeth (1973) risk prices in percent per annum using 25 size-

and book-to-market sorted portfolios. Shanken (1992) corrected t-statistics are presented

in the adjacent column. The estimated models are (i) the standard CAPM, (ii) the two-

beta ICAPM with cash-flow and discount-rate risks, (iii) the four-beta ICAPM with market

and firm-level cash-flow and discount-rate risks, (iv) the four-beta ICAPM with upside and

downside cash-flow and discount rate risks, and (v) the eight-beta ICAPM with upside and

downside market-wide and firm-level cash-flow and discount-rate risks. The market-wide

cash-flow and discount-rate news terms are extracted using the VAR of Table 2. Portfolio-

specific cash-flow and discount-rate news terms are constructed from a VAR system with

firm-level characteristics including excess return, book-to-market equity, and average size for

each portfolio separately. The downside (upside) markets are defined as periods in which

the unexpected market excess return is below (above) its mean. The R2 (in percent) are

corrected for degrees of freedom. Mean squared pricing error (MSPE) and mean absolute

pricing error (MAPE) are in percent per annum.
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(i) (ii) (iii) (iv) (v)

Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. Coeff. t-stat. Coeff. t-stat.

λ0 3.94 (0.65) 3.54 (0.68) 7.58 (7.81) 10.94 (2.12) 7.29 (16.00)

λm 5.09 (1.02)

λc 34.56 (2.30)

λd -2.07 (-0.37)

λcc 27.31 (1.95)

λcd -1.18 (-0.23)

λdc 124.39 (3.60)

λdd -80.62 (-1.28)

λ+c -4.08 (-0.52)

λ−c 40.58 (1.96)

λ+d 2.97 (0.49)

λ−d -17.88 (-1.72)

λ+cc -6.95 (-1.26)

λ−cc 33.53 (3.92)

λ+cd -0.73 (-0.12)

λ−cd -11.43 (-2.29)

λ+dc 17.56 (1.01)

λ−dc 34.98 (1.76)

λ+dd -7.30 (-0.50)

λ−dd -76.06 (-5.06)

R
2

4.28 27.58 55.59 56.49 89.39

MSPE 6.75 4.89 2.72 2.67 0.48

MAPE 2.09 1.63 1.42 1.25 0.52
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Table 4: Pricing Errors

The table reports the pricing errors in percent per annum of each of 25 size- (S) and

book-to-market- (B) sorted portfolios from the Fama-MacBeth (1973) regressions presented

in Table 3. S1 refers to the portfolios with the smallest firms, and S5 includes the portfolios

with largest firms. Similarly, B1 refers to the portfolios with lowest book-to-market ratios,

and B5 includes the portfolios with the highest book-to-market ratios. The estimated models

are (i) the standard CAPM, (ii) the two-beta ICAPM by Campbell and Vuolteenaho (2004),

(iii) the four-beta ICAPM by Campbell et al. (2010), (iv) the four-beta ICAPM by Botshekan

et al. (2013), and (v) the eight-beta ICAPM.
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(i) (ii) (iii) (iv) (v)

S1B1 -7.35 -6.73 -3.51 -2.62 -0.44

S1B2 -1.90 0.43 1.73 -3.12 -0.29

S1B3 0.97 1.39 1.22 -0.33 -0.63

S1B4 3.12 3.34 0.14 2.57 -0.22

S1B5 5.19 4.73 2.04 4.22 0.57

S2B1 -3.67 -0.78 -0.77 0.79 0.18

S2B2 0.57 1.71 2.19 0.90 1.66

S2B3 2.26 2.38 2.25 1.28 0.61

S2B4 2.37 1.97 1.12 1.01 -0.09

S2B5 3.07 1.92 0.54 1.86 0.61

S3B1 -2.68 -0.38 -1.28 0.85 -0.31

S3B2 0.23 0.52 0.94 -0.48 -0.34

S3B3 1.35 0.74 1.75 -0.10 0.19

S3B4 1.88 0.92 1.07 -0.67 -0.15

S3B5 2.32 0.36 2.36 0.18 0.90

S4B1 -1.91 -0.28 -0.93 1.29 -0.01

S4B2 -1.24 -1.01 -1.10 -1.30 -2.09

S4B3 0.32 -0.13 -1.87 -1.33 0.23

S4B4 1.01 -0.44 0.16 -0.79 -0.63

S4B5 1.01 -1.43 -1.74 0.05 0.25

S5B1 -2.40 -1.25 -0.24 0.26 0.48

S5B2 -2.01 -1.48 0.24 -0.66 0.71

S5B3 -1.38 -2.06 -1.43 -1.29 0.07

S5B4 -1.58 -3.02 -2.20 -2.92 -0.57

S5B5 0.46 -1.45 -2.69 0.36 -0.68
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Table 5: Portfolio Risk Measures

The table reports the average betas of 25 size- (S) and book-to-market (B) portfolios

corresponding to equity premium components presented in Table 6. The betas are computed

as time-series averages of betas over the 90-month rolling window. S1 denotes the lowest

market equity quintile, S5 the highest market equity quintile, B1 the lowest book-to-market

equity quintile, and B5 the highest book-to-market equity quintile. The market-wide cash-

flow and discount-rate news terms are extracted using the VAR of Table 2. Portfolio-specific

cash-flow and discount-rate news terms are constructed from a VAR system with firm-level

characteristics including excess return, book-to-market equity, and average size for each

portfolio separately.
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B1 B2 B3 B4 B5 B5-B1 B1 B2 B3 B4 B5 B5-B1

β+cc β−cc

S1 -0.38 -0.20 -0.15 -0.13 0.01 0.39 0.07 0.13 0.08 0.05 0.09 0.02

S2 -0.29 -0.18 -0.03 -0.01 0.05 0.35 0.03 0.03 0.05 0.10 0.13 0.10

S3 -0.35 -0.05 0.04 0.10 0.30 0.66 -0.01 0.07 0.08 0.10 0.21 0.22

S4 -0.15 0.03 0.04 0.19 0.29 0.45 -0.01 0.07 0.06 0.07 0.12 0.13

S5 -0.08 0.04 0.13 0.28 0.22 0.30 -0.07 0.00 -0.04 0.05 0.09 0.15

β+cd β−cd

S1 0.57 0.28 0.20 0.20 0.03 -0.55 0.48 0.20 0.13 0.03 0.11 -0.38

S2 0.43 0.24 0.00 0.02 0.06 -0.37 0.32 0.14 0.04 0.00 0.07 -0.25

S3 0.50 0.09 -0.09 -0.10 -0.22 -0.71 0.26 0.06 0.01 -0.11 0.03 -0.24

S4 0.31 0.02 0.06 -0.15 -0.08 -0.39 0.17 0.01 -0.07 -0.08 0.01 -0.16

S5 0.10 -0.13 -0.17 -0.22 -0.17 -0.27 0.03 -0.06 -0.15 -0.20 -0.06 -0.09

β+dc β−dc

S1 0.02 -0.05 0.01 0.07 0.07 0.04 0.01 0.00 0.02 0.06 0.05 0.04

S2 -0.00 -0.01 -0.02 0.01 0.09 0.09 0.00 0.02 0.00 0.02 0.03 0.03

S3 -0.01 -0.02 -0.02 0.02 -0.07 -0.06 0.01 0.01 -0.01 0.00 -0.04 -0.05

S4 0.01 -0.02 0.09 -0.02 0.05 0.03 -0.01 -0.00 0.02 -0.00 0.02 0.03

S5 0.01 -0.00 0.01 -0.02 0.06 0.06 0.00 -0.01 0.03 0.01 0.03 0.03

β+dd β−dd

S1 -0.01 0.05 -0.02 -0.15 -0.11 -0.10 0.03 0.01 0.01 0.01 0.01 -0.02

S2 0.02 -0.01 0.00 -0.05 -0.15 -0.17 0.01 0.01 -0.00 0.01 0.02 0.01

S3 0.00 0.00 0.02 -0.04 0.09 0.09 0.01 0.00 -0.00 0.01 -0.01 -0.02

S4 -0.03 0.01 -0.20 0.01 -0.10 -0.06 -0.02 -0.00 0.05 0.00 0.02 0.04

S5 0.00 0.05 -0.05 -0.04 -0.09 -0.09 -0.01 0.01 0.01 0.03 -0.01 -0.00
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Table 6: Equity Premium Contributions

The table reports the time-series averages of equity premium components in percent per

annum and their t-statistics. The estimates are computed as time-series averages of λ·jt · βjt
where βjt is the cross-sectional mean of beta of risk factor j over the 90-month rolling window

t, and λ·jt is the estimated risk premium for risk factor j from monthly recursive cross-

sectional regressions of average returns over the 90-month rolling window t on a constant

and betas over the same rolling window. Specification (i) includes all 25 size- and book-to-

market portfolios, specification (ii) includes 5 value portfolios with highest book-to-market

ratios, and specification (iii) includes 5 growth portfolios with lowest book-to-market ratios.

(i) (ii) (iii)

Coeff. t-stat. Coeff. t-stat. Coeff. t-stat.

λ+ccβ
+
cc 0.56 (13.58) 1.27 (13.67) 0.29 (2.97)

λ−ccβ
−
cc 0.61 (14.20) 0.95 (11.94) -0.11 (-1.50)

λ+cdβ
+
cd 0.19 (2.78) 0.36 (3.31) -0.05 (-0.40)

λ−cdβ
−
cd 0.41 (5.84) 1.20 (11.75) -0.67 (-5.89)

λ+dcβ
+
dc 0.15 (2.55) 0.08 (1.00) 0.12 (1.90)

λ−dcβ
−
dc 0.05 (1.79) 0.23 (4.02) -0.17 (-4.96)

λ+ddβ
+
dd 0.02 (0.63) 0.21 (4.27) -0.10 (-2.46)

λ−ddβ
−
dd 0.16 (2.36) 0.58 (5.19) -0.20 (-3.10)
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Table 7: Dividend Yield as a State Variable

The table reports Fama-MacBeth (1973) risk prices in percent per annum using 25 size-

and book-to-market sorted portfolios. Shanken (1992) corrected t-statistics are presented in

the adjacent column. The market-wide cash-flow and discount-rate news components are

extracted from three sets of state variables. Specification (i) includes excess return, dividend

yield, small-stock value spread, and short-term interest rate. Specification (ii) employs a

different measure of dividend yield based on twelve-month trailing average. Specification

(iii) employs a different measure of dividend yield computed as a ratio of previous period

dividend to current stock price. Portfolio-specific cash-flow and discount-rate news terms

are constructed from a VAR system with firm-level characteristics including excess return,

book-to-market equity, and average size for each portfolio separately. The R2 (in percent) are

corrected for degrees of freedom. Mean squared pricing error (MSPE) and mean absolute

pricing error (MAPE) are in percent per annum.

(i) (ii) (iii)

Coeff. t-stat. Coeff. t-stat. Coeff. t-stat.

λ0 7.30 (14.29) 7.34 (14.34) 7.62 (17.14)

λ+cc -2.48 (-0.42) -3.53 (-0.58) -5.86 (-1.04)

λ−cc 19.49 (2.46) 18.36 (2.34) 20.96 (2.91)

λ+cd 4.91 (0.60) 3.71 (0.48) 2.66 (0.37)

λ−cd -32.39 (-3.47) -27.02 (-3.22) -28.12 (-3.53)

λ+dc 18.59 (0.96) 9.00 (0.42) 5.28 (0.27)

λ−dc 1.38 (0.80) 9.12 (0.48) 7.44 (0.44)

λ+dd -12.86 (-0.70) -17.24 (-0.90) -16.62 (-1.00)

λ−dd -83.34 (-3.72) -97.85 (-3.90) -102.07 (-4.58)

R
2

87.68 87.49 90.03

MSPE 0.60 0.61 0.49

MAPE 0.56 0.58 0.50

48



Table 8: Common Set of State Variables

The table reports Fama-MacBeth (1973) risk prices in percent per annum using 25 size-

and book-to-market sorted portfolios. Shanken (1992) corrected t-statistics are presented

in the adjacent column. The market-wide and portfolio-specific cash-flow and discount-rate

news components are extracted from three sets of state variables specified in Table 7. The

R2 (in percent) are corrected for degrees of freedom. Mean squared pricing error (MSPE)

and mean absolute pricing error (MAPE) are in percent per annum.

(i) (ii) (iii)

Coeff. t-stat. Coeff. t-stat. Coeff. t-stat.

λ0 2.50 (0.60) 4.29 (1.06) 3.49 (0.87)

λ+cc -5.09 (-0.66) -7.11 (-1.04) -5.60 (-0.74)

λ−cc 25.90 (2.29) 25.72 (2.37) 25.35 (2.29)

λ+cd 3.53 (0.39) 2.98 (0.39) 3.71 (0.43)

λ−cd -17.88 (-1.30) -16.23 (-1.39) -19.01 (-1.46)

λ+dc 95.82 (3.32) 76.91 (2.93) 84.78 (3.02)

λ−dc -90.17 (-2.57) -71.39 (-2.31) -79.99 (-2.34)

λ+dd 28.54 (1.38) 20.69 (1.05) 24.10 (1.12)

λ−dd -23.90 (-0.84) -19.25 (-0.76) -23.54 (-0.82)

R
2

81.90 84.16 82.67

MSPE 0.89 0.78 0.85

MAPE 0.74 0.70 0.72
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Table 9: Alternative Firm-Level States Variables

The table reports Fama-MacBeth (1973) risk prices in percent per annum using 25 size-

and book-to-market sorted portfolios. Shanken (1992) corrected t-statistics are presented

in the adjacent column. Market-wide news is obtained from a VAR system summarized in

Table 2. For computation of firm-level news, the VAR system relies on three sets of state

variables. Specification (i) includes excess portfolio return, portfolio book-to-market equity,

and average firm size. Specification (ii) employs a different measure of portfolio book-to-

market equity. Specification (iii) additionally includes portfolio book equity. The R2 (in

percent) are corrected for degrees of freedom. Mean squared pricing error (MSPE) and

mean absolute pricing error (MAPE) are in percent per annum.

(i) (ii) (iii)

Coeff. t-stat. Coeff. t-stat. Coeff. t-stat.

λ0 7.29 (16.00) 7.54 (11.14) 6.87 (8.30)

λ+cc -6.95 (-1.26) -8.95 (-0.99) -11.03 (-1.13)

λ−cc 33.53 (3.92) 39.73 (2.96) 34.76 (2.17)

λ+cd -0.73 (-0.12) 0.09 (0.01) 3.02 (0.40)

λ−cd -11.43 (-2.29) -12.35 (-2.32) -12.72 (-2.03)

λ+dc 17.56 (1.01) 23.76 (0.61) -28.24 (-0.77)

λ−dc 34.98 (1.76) 25.87 (0.78) -11.96 (-0.45)

λ+dd -7.30 (-0.50) -23.04 (-0.91) -52.39 (-2.56)

λ−dd -76.06 (-5.06) -88.00 (-2.99) -45.64 (-1.70)

R
2

89.39 79.51 73.86

MSPE 0.48 1.01 1.28

MAPE 0.52 0.81 0.91
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Table 10: 30 Single-Sorted Portfolios

The table reports Fama-MacBeth (1973) risk prices in percent per annum using 10

size-, 10 book-to-market- and 10 momentum-sorted portfolios. Shanken (1992) corrected

t-statistics are presented in the adjacent column. The underlying VAR specifications to ex-

tract the cash-flow and discount-rate news are defined in Table 7. The R2 (in percent) are

corrected for degrees of freedom. Mean squared pricing error (MSPE) and mean absolute

pricing error (MAPE) are in percent per annum.

(i) (ii) (iii)

Coeff. t-stat. Coeff. t-stat. Coeff. t-stat.

λ0 14.53 (2.54) 18.03 (4.51) 14.93 (3.05)

λ+cc -34.28 (-2.62) -33.86 (-4.27) -32.97 (-3.28)

λ−cc 51.57 (3.59) 48.70 (4.89) 48.50 (4.13)

λ+cd 15.35 (1.38) 12.53 (2.04) 16.17 (1.75)

λ−cd -54.85 (-3.20) -52.02 (-5.00) -54.13 (-3.77)

λ+dc -31.72 (-1.22) -24.04 (-1.37) -28.78 (-1.29)

λ−dc 42.30 (1.37) 28.26 (1.31) 33.78 (1.26)

λ+dd -58.91 (-1.52) -52.12 (-2.54) -65.56 (-2.01)

λ−dd 43.91 (0.78) 30.87 (1.12) 51.58 (1.13)

R
2

69.49 86.31 81.65

MSPE 1.70 0.76 1.28

MAPE 1.02 0.66 0.89
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Table 11: Alternative Downside Risk Specifications

The table reports Fama-MacBeth (1973) risk prices in percent per annum using 25 size-

and book-to-market sorted portfolios. Shanken (1992) corrected t-statistics are presented

in the adjacent column. Specification (i) defines downside (upside) markets as periods in

which the unconditional market excess return is below (above) its mean. Specification (ii)

defines downside (upside) markets as periods in which unconditional market excess return is

below (above) zero. Specification (iii) defines downside (upside) markets as periods in which

the unconditional market excess return is below (above) the risk-free rate. The design of

news follows otherwise the benchmark case in Table 3. The R2 (in percent) are corrected for

degrees of freedom. Mean squared pricing error (MSPE) and mean absolute pricing error

(MAPE) are in percent per annum.

(i) (ii) (iii)

Coeff. t-stat. Coeff. t-stat. Coeff. t-stat.

λ0 7.33 (16.88) 7.48 (16.13) 7.35 (8.29)

λ+cc -6.94 (-1.33) -7.44 (-1.14) 0.07 (0.28)

λ−cc 36.61 (4.34) 32.09 (3.81) 41.42 (2.83)

λ+cd 0.61 (0.11) -0.17 (-0.03) 0.10 (0.41)

λ−cd -14.86 (-3.16) -12.10 (-2.40) -1.68 (-0.31)

λ+dc 28.48 (2.00) 34.73 (2.12) -0.31 (-0.22)

λ−dc 24.32 (1.37) 10.33 (0.58) 108.58 (3.13)

λ+dd -0.58 (-0.05) -1.85 (-0.13) -0.23 (-0.14)

λ−dd -75.31 (-5.26) -73.66 (-5.25) -63.93 (-1.08)

R
2

91.05 89.60 64.25

MSPE 0.44 0.51 1.75

MAPE 0.49 0.53 1.11
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Table 12: Direct Estimation of Cash-Flow News

The table reports Fama-MacBeth (1973) risk prices in percent per annum using 25 size-

and book-to-market sorted portfolios. Shanken (1992) corrected t-statistics are presented in

the adjacent column. The market-wide discount-rate news is extracted using the VAR of

Table 2. The market-wide cash-flow news is estimated in a separate VAR system. Specifica-

tion (i) employs dividend growth, market excess return and dividend yield as state variables.

Specification (ii) employs dividend growth, market excess return and the 12-month trail-

ing average of the dividend yield as state variables. Specification (iii) employs dividend

growth, market excess return, the 12-month trailing average of the dividend yield, and the

short-term interest rate as state variables. The R2 (in percent) are corrected for degrees of

freedom. Mean squared pricing error (MSPE) and mean absolute pricing error (MAPE)

are in percent per annum.

(i) (ii) (iii)

Coeff. t-stat. Coeff. t-stat. Coeff. t-stat.

λ0 7.60 (16.53) 7.75 (16.84) 7.68 (14.82)

λ+cc 1.66 (5.27) 1.46 (4.99) 1.41 (4.57)

λ−cc 2.46 (4.39) 2.42 (4.20) 1.84 (3.63)

λ+cd -24.94 (-3.78) -23.82 (-3.61) -23.45 (-3.41)

λ−cd -10.37 (-1.83) -10.52 (-1.89) -4.68 (-0.93)

λ+dc 4.41 (3.10) 3.50 (2.45) 0.64 (0.45)

λ−dc 1.36 (0.92) 1.62 (0.96) 2.49 (1.76)

λ+dd -42.82 (-5.00) -39.29 (-4.56) -37.37 (-4.03)

λ−dd -55.65 (-3.14) -62.55 (-3.43) -57.90 (-3.48)

R
2

90.90 90.73 85.63

MSPE 0.45 0.46 0.53

MAPE 0.56 0.58 0.62
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